Week Nine Oceanography Notes

Note Taker: Julia Winberg

Class November 5, 2018

A Tale of Two Pumps: CO2 In the Ocean

- Two Pumps are biological and physical
- There has been a rapid increase in current atmospheric CO2 concentrations
 - No debate around this (although some think there is)
 - CO2 is increasing at an unprecedented rate because of our activities
- Manalo'a Hawaii, CO2 monitor measures 405.51 ppm of CO2 in the atmosphere as of early October
- Earth's CO2 levels fluctuate with the seasons as the earth breathes and experiences greater rates of photosynthesis
- Sunlight+ Nutrients + CO2 (from the sun and in the ocean) → Phytoplankton
- There is FIFTY times more inorganic carbon in the ocean than in the atmosphere.
- The ocean is really good at fixing CO2 and doing stuff with it
 - This fact is supported by a figure shown on the slides from class
- CO2 is fixed (partially) by phytoplankton life cycle, sinking to sea floor and also by being recycled (eaten)
- Solubility Pump
 - Gas exchange allows CO2 to enter the ocean
 - Cold water holds more gas than warm water
 - Solubility increases in cold water: thus, polar regions are sinks, equator is a source
- Upwelling pumps **out** CO2 (source)
- Deep ocean is a sink
- Ocean naturally acts as a carbon sink for CO2 but locations of sinks and sources is not uniform
- Solubility is increased in colder water because there is less activity between the molecules making room for more things
- Biological Pump (also a figure in the slides)
 - Phytoplankton dies and sinks or is consumed as food and recycled back into the water column
 - The deeper in the ocean, the longer the CO2 will stay out of the atmosphere
 - CO2 is "trapped" in the bottom. The ocean buries the CO2, preventing extreme heat and warming had the same CO2 been in the atmosphere
 - Without the biological pump the world would be over-saturated with CO2, and the CO2 in the atmosphere would be around 600ppm

- The biological pump is crucial and imperative to climate stabilization
- Inverted pyramid of ocean sink
 - Carbon Uptake (Primary Producers)
 - Carbon Flux (between 5 and 15% of Carbon, hidden for decades)
 - Deeper Carbon Flux (less than five percent, centuries)
 - Carbon Burial (around 1 percent, millenium)
- Is there any way we could increase the efficiency of the pump in order to help our warming climate?
- Impacting Phytoplankton Productivity
 - o Temperature
 - Light
 - Nutrients (N,P, Si)
 - Grazing by zooplankton
- HNLC areas
 - o High Nutrient (Nitrate), Low Chlorophyll.
 - Area of high nutrients, not phytoplankton biomass
 - Chlorophyll is a proxy (or a measure) of phytoplankton biomass
- Major Limiting Nutrients, vs. Micro Limiting Nutrients
 - o Iron Presence (micro
 - Other minor limiting nutrients: Iron, Zinc, other metals
 - We discovered that Iron and Zinc profiles are a function of depth, similar to those of major nutrients (depleted at the surface, abundant at the deep)
 - This tells us that Iron and Zinc are important in photosynthesis
- Remineralization at Depth
 - John Martin, scientists: "give me half a tanker of iron, and I will give you an ice age."
 - O Why Would this work?
 - Iron is a limiting nutrient
 - Increases photosynthesis
 - Making organic carbon
 - Earth gets a lot colder
 - Adding iron in the ocean?
 - o Draw-down of iron, increase in phytoplankton biomass?
 - Bringing more carbon to deep ocean
 - Could more iron cause more harmful algal blooms or ecosystem collapse?
 - We tried adding Iron to the ocean
 - Super large scale, expensive projects
 - Increases chlorophyll and phytoplankton, but little to no increase in carbon export
 - Impact not yet consistent, varying
 - Hotly debated

Life in Hydrothermal Vents and The Deep Sea

- All life does not depend on sunlight. This is proven by the animals in the deep sea, at hydrothermal vents
- Chemosynthesis
 - Oxidizing chemicals, usually hydrogen sulphide, and making energy from it
 - Discovered by Colleen Cavanaugh, a professor at Harvard, when she was a first year graduate student
- Deep Ocean
 - Cold and Dark
 - o 0-3 degrees C
 - No photosynthesis
 - Most food is stuff that has fallen from the surface
- 1977: Alvin
 - Galapagos
 - Discovers Black Smokers
 - Chimneys deep underwater that pump out super hot water, full of chemicals
- At the Black Smokers: Tube Worms (Riftia) and shrimp, crabs
- When we would expect to find nothing down there we actually found a pretty well founded ecosystem, supported by microbes
- Early evidence of Deep Sea Heat: 1880s, Hot Brines
- Red Sea deep water was measured at 44 degrees C in 1964
- 1965, more hot water, warmer than expected
- Metal-rich sediments
 - 1968-1983 Deep sea drilling and the Golmar Challenger
 - Hot water present wherever there was seafloor spreading, not just in red
 - Found metal-rich sediments
- Unusual Rocks
 - Sometimes geologists would find rocks that had a grooved, eclectic pattern
 - o Brown, orange, dark green
 - Metal deposits in the rock
- Ophiolites
 - Ocean crust on land (very metal-rich), brought up on to continents during tectonic movement
- Missing Heat: Other pattern of heat moving away from mid-ocean ridges, unexpected
- 1977, Woods Hole and Bob Ballard, Angus Discovery Cruise

- They find black smokers taller than the cathedral of Notre Dame, new production of chemicals, plumes like from Mt. St. Helens
- Microbes, Microbial mats supporting ecosystems
- Magma heating waters, microbes harnessing energy from chemicals
- 350-400 degrees C, O2 completely gone
 - o Really acidic
 - Animals picking up dissolved metals and fixing hydrogen sulfide
 - Water exits the plume and mixes with cold, oxygen-rich water
- Black Smokers are super metal-rich, really hot. Inside them, metals and sulfides mix.
- White smokers are made up of Anhydrite and Silica, but they are not as hot
- Smokers depend on chemicals
 - o Black: Most common, 400-350 degrees C, hydrogen sulfide
 - White: more rare, cooler (100s range C), Silicate, Anhydrite gives white color
- Actual distribution of Smokers unknown
- Chemosynthesis
 - Using Chemical Energy instead of Solar Energy
 - H2O + CO2 + H2S+ O2 → Carbohydrates and Sulfuric Acid
 - Dominated by microscopic archaea (bacteria-like organisms)
- Galapagos rift is thriving
- Tube Worms or Riftia
 - Have hemoglobin (blood, humans have this too)
 - No mouth, gut, or anus
 - o Filter oxygen, hydrogen sulfide and CO2 from seawater
 - Plume contains the hemoglobin
 - Blood transports chemicals to bacteria in cavity
 - Bacteria produces sugar and the tube worms use it
 - Actual Tubes are made of Chitin
 - Trophosome with crystals of Sulfur
- Colleen Cavanaugh: remember who she is? There is a great video about her work in the lecture slides

Class November 9, 2018

More Hydrothermal Vents, Cold Seeps

- Hydrothermal Vents
 - Short Life Span, dependent on sporadic volcanic activity of mid-ocean ridges
 - Only last as long as years, we think
 - They die when they run out of chemicals, hot water stops flowing
- Sustaining Vent Life
 - How do vent communities move from one vent to another?
 - Dead Whale Hypothesis

- Whale Falls boast a similar environment to Hydrothermal Vents, perhaps a stepping stone when the ecosystem needs to move after the vent dies
- Perhaps Larvae flow in deep sea currents
- Temporal Changes
 - Cycle, process
 - Successional community in the deep sea, just like in many other coastal ecosystems
- Longevity, Estimated by:
 - Heat loss in rocks (decades)
 - Isotopes in Sulphide (15-60 years)
 - Clam, deep sea organisms, age 4-40 years, clams lay down growth rings, counting them
- West-Pacific back-arc basins
 - o Anemones, snails, riftia
 - Species variation
- Mid-Atlantic Ridge
 - Hydrogen Sulphide
 - Clams
- Crabs at the bottom of the sea
 - Yeti Crabs
 - Bacteria line their claws and legs, and yeti crabs feed them (symbiotic microbes)
- Cold Seeps
 - o Discovered 1984
 - Hypersaline environments (high salinity)
 - Normal temperature by hydrogen sulphide rich
 - Leaking out of ocean crust
 - Hydrocarbon Seeps
 - **1984**
 - Hydrogen Sulphide and Methane as energy sources
- Seeps are disparate and flat, way flatter than a hydrothermal vent
- We watched a video in class about a cold seep 1400m deep in Pakistan, go watch it!
- Seeps rely on methane, methane hydrate forms making a structure similar to ice
- Deep Ocean
 - 1-3% of surface H2O food makes it to the ocean floor
 - Outside the photic zone, everyone is hungry
- Whale Fall
 - Carcass decomposition
 - Gases build up inside the whale
 - Several Stages
 - Mobile Scavenger Stage
 - Months to years
 - Sharks, fish, snails, microbes, etc.
 - Whale is consumed at high rate

- Scavengers remove soft parts of whale
- Messy eaters
- o Messy Eaters expand the footprint of the whale
- Enrichment Stage
 - Bones colonized by bacteria, other organisms, opportunists
- Sulphophilic Stage
 - Emitting sulphide
 - Chemoautotrophs present
 - Microbial mat on whale skeleton
 - Organic matter = stepping stone
- Chemosynthesis has now been found in various organisms, ecosystems
- Could these communities be linked to the origin of life?
 - Hydrothermal vent communities, mimicking early Earth?
 - o Prebiotic soup
 - o Low ph, O2
 - Driven by chemical energy
 - Formation of organic molecules